FERMAT TEST AND THE EXISTENCE OF PSEUDOPRIMES

Ega Gradini, M.Sc

ABSTRACT

In this paper the author present Fermat test as one of primality tests. In order to perform the ability of the test, the algorithm of the test coded in Mathematica (6.0 version). The application of Fermat’s Little Theorem as well as Euler’s Theorem on the tests are also discussed and this leads to the concept of pseudoprime.

Keywords: Fermat Test, Mathematica

1 Ega Gradini, Dosen Prodi Pendidikan Matematika – STKIP Bina Bangsa Getsempena, Jalan Tgk Chik Di Tiro, Peuniti, Banda Aceh, Telepon 0651-33427, Email: ega@stkipgetsempena.ac.id
A. INTRODUCTION

Issue of security is the most common issue in human life. Almost all activities involve security issue such as Personal Identification Number (PIN) of ATM, electronic mail, purchase good with credit card, fund transfer, even an order to have war from the armies of a country to another. Companies, government and individuals need to send messages in a way where only the intended recipient able to read the message. Prime number plays an important role in the RSA (Rivest, Shamir & Adler) cryptography. Until now, there is no valid formula to produce prime number, one of the recent technologies is to determine primality or compositeness of an integer given.

Primality test is the process to testing whether a given integer \(n \) is a prime or not. There are two types of primality tests: deterministic and probabilistic. Deterministic test is primality test that determine with absolute certainty whether a number is prime or not. Lucas-Lehmer test is one of the deterministic primality tests. Probabilistic test also determine whether a given number \(n \) is a prime or not, but probabilistic test can potentially (although with very small probability) falsely identify a composite number as prime (not vice versa). However, they are in the general much faster than deterministic test. Fermat test, Solovay-Strassen test, and Miller-Rabin test are some of probabilistic primality test.

In this project Fermat test was being carried out using the help of Mathematica 6.0 software to assess the ability. Mathematica 6.0 is very easy to learn and the command is very simple. Mathematica 6.0 has so many build-in functions that can carry out many technical tasks like counting digit number, solving congruency and modulo problems, where this function is so much needed in carrying out the tests that we will see later. Mathematica 6.0 also has a build-in function to count number of primes less than an integer and many more functions related to number theoretical concept.

Fermat test are probabilistic tests since they cannot certainly identify the given number is prime, sometimes they fail. This is due to the Fermat’s little theorem and Euler’s theorem which does not work in both ways [Jones].

Fermat Little Theorem says that if \(n \) is a prime then \(a^n \equiv a \pmod{n} \). Euler’s Theorem also says that if \(p \) is a prime number and \(a \) is an integer, then \(a^p \equiv a \pmod{p} \). Furthermore, if the greatest common divisors of \(a \) and \(p \) is 1, then \(a^{(p-1)} \equiv 1 \pmod{p} \) (Mcintosh, 2007).

These theorems do not guarantee the primality of \(n \) even if \(n \) satisfies the congruency. Therefore these theorems do not work in both ways but the tests assumed that it works. That is why pseudoprime exists. The source code of each test using Mathematica 6.0 is shown in section 2.

In section 3, the pseudoprime is discussed, including Carmichael numbers as absolute pseudoprime.
B. FERMAT TEST AND THE CODING IN MATHEMATICA 6.0 SOFTWARE

The following source codes are derived from an algorithm obtained mainly from Fermat’s theorem, Euler’s Theorem and other related theorems from number theory to test whether or not the given number is a prime number. First, first 100 integers set as the input. The output will come up as a prime or a composite. After this is done the author enlarge the input range to the first 1000 and until 10,000. The author shows the source codes here as they are the main task for this project. The author also used some build-in functions of Mathematica 6.0 to carry out some technical tasks, like finding the exact number of primes less than an integer, tabulating prime numbers, pseudoprimes, and Carmichael numbers obtained from the output of the following source codes, drawing and plotting facilities are also been used to facilitate our tasks. The build-in Mathematica 6.0 commands, “PrimeQ[integer]” and “PrimePi[integer]” are used to compare the list of primes and pseudoprimes and to compute percentage of pseudoprimes produced by each test. To get a full picture of this project, the author suggest one refers to (Gradini, 2009).

2.1 Prime Number Theorem

Let \(\pi(x) \) denote the number of prime number \(\leq x \). Then for large values of \(x \), \(\pi(x) \) is \(x \) (Bektas, 2005).

By using built-in program in Mathematica (6.0 version), we can get the number of prime number \(\leq x \), is denoted as \(n(x) \). In the table below, we list down the number of prime number \(\leq x \) by using Theorem 2.3.1 and built-in program in Mathematica (6.0 version).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(n(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>1,000</td>
<td>1229</td>
</tr>
<tr>
<td>10,000</td>
<td>9592</td>
</tr>
<tr>
<td>1,000,000</td>
<td>78498</td>
</tr>
<tr>
<td>10,000,000</td>
<td>664579</td>
</tr>
<tr>
<td>100,000,000</td>
<td>5761455</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>50,847,534</td>
</tr>
<tr>
<td>10,000,000,000</td>
<td>455,052,511</td>
</tr>
</tbody>
</table>

It can be seen there are some differences between number of prime number approximated by theorem with the result Mathematica (6.0 version) given. Later, in computation, Table 2.2 will be used as the exact number of prime.
2.2 Fermat Little Theorem

Pierre de Fermat (1601-1665) is one of the most famous mathematicians in the world since his works on number theory, algebra, calculus, probability and analytic geometry. His most famous work is Fermat little theorem and Fermat last theorem, which is Fermat little theorem become one of the fundamental theory in primality testing.

Theorem 2.2.1 Fermat Little Theorem

If \(p \) is a prime number and \(a \) is an integer, then \(a^p \equiv a \pmod{p} \). Furthermore, if the greatest common divisors of \(a \) and \(p \) is 1, then \(a^{(p-1)} \equiv 1 \pmod{p} \) (Mcintosh, 2007). Proofs of the theorem can be found in any algebra text, here is one of them.

Proof: Consider the first \(p - 1 \) positive multiples of \(a \), that is, the integer \(a, 2a, 3a, ..., (p - 1)a \). None of this number is congruent modulo \(p \) to neither any other nor zero. If it happened \(ra \equiv sa \pmod{p} \), \(1 \leq r < s \leq p - 1 \) then \(a \) could be cancelled to gives \(r \equiv s \pmod{p} \), which is impossible. Therefore, the previous set of integer must be congruent modulo \(p \) to 1, 2, 3, ..., \(p - 1 \), taken in some order. Multiplying all these congruent together, we find that \(a.2a.3a... (p - 1)a \equiv 1.2.3...((p - 1)) \pmod{p} \) then

\[a^{(p-1)} (p - 1)! \equiv (p - 1)! \pmod{p} \]

by cancelling \((p - 1)! \) from both sides of the preceding congruence, this is possible since \(p \) \(\nmid \) \((p - 1)! \), gives \(a^{(p-1)} \equiv 1 \pmod{p} \) (Dorsey, 1999).

Fermat’s theorem allows proving that a given number \(n \) is composite without factoring it. Fermat’s little theorem can be change in alternate statement, if \(a^{(n-1)} \equiv 1\pmod{n} \) for some \(a \) with \(a \neq 0 \pmod{n} \) then \(n \) is composite.

Lemma 2.2.1

If \(2^m + 1 \) is prime, then \(m = 2^n \) for some integer \(n \geq 0 \) (Eynden, 2001).

There is a mistake among Fermat works, he \(n+1 \), \(n \geq 0 \) prime, thus he has a formula to perform prime value. But then, some mathematicians disapproved Fermat conjecture. According to Yan (2000), here are some of them:

- \(5+1 \), was factored by Euler in 1732 by showing that \(32+1 = 641.6700417 \)
- \(6+1 \) was factored by Landry and \(6+1 = 2^{64} + 1 = 274177.67280421310721 \)
- \(7+1 \) was factored by Brent and Pollard in 1980 by using Brent and Pollard’s Monte Carlo (rho) method.
- \(7+1 = 2^{256} + 1 = 1238926361552897 \)
- \(\rho_{63} \)
- \(9+1 \) was factored by Lenstra et al. in 1990 by using Number Field Sieve
- \(9+1 = 2^{512} + 1 = 2424833.74556028256478842083373 \)
- \(9573620045491878366342657.\rho_{99} \)

Definition 2.2.1

A composite number \(n \) is a pseudo-prime to base \(a \) (psp(a)) or \(a \)-pseudo-prime) if \(a^n = a \pmod{n} \). Note that, if \(\text{GCD} (a, n) = 1 \), the condition above is equivalent with \(a^{n-1} \equiv 1 \pmod{n} \) (Kumanduri and Romero, 1998).
2.3 Fermat Test

Fermat test is developed from Fermat Little Theorem and then become one of the probabilistic prime testing. According to Fermat’s Little Theorem, if \(n \) is prime and \(\gcd(a, n) = 1 \) then \(a^{n-1} \equiv 1 \pmod{n} \). If \(n \) is not prime, it is not necessary true that \(a^{n-1} \equiv 1 \pmod{n} \), but there still a possibility.

According to Herman and Soltys (2008), all primes pass the Fermat test for all \(a \in \mathbb{Z} \). Fermat’s theorem also can be used to test compositeness of a number. For a given integer \(n \), choose some integer \(a \) with \(\gcd(a, n) = 1 \) and compute \(r \equiv a^{n-1} \pmod{n} \). If the modulo \(n \) computation give the results not equal to 1, \(n \) is composite. Otherwise, \(n \) probably prime, in other words, \(n \) can be prime or composite.

2.4 Algorithm of Fermat Test

Input: an integer \(n \geq 3 \).

Output: \(n \) is prime or \(n \) is composite

1. Choose random integer \(a \) with \(2 \leq a \leq n - 1 \) and \(\gcd(a, n) = 1 \).
 1.1 Compute \(r \equiv a^{n-1} \pmod{n} \).
 1.2 If \(r \neq 1 \), \(n \) is composite, otherwise \(n \) is prime number.

2. If \(\gcd(a, n) \neq 1 \), then \(n \) is composite.

Here, when \(\gcd(a, n) \neq 1 \), \(n \) is certainly composite because it is implies that \(n \) has another divisors beside 1 and itself, which is contradict with definition of prime number. If \(\gcd(a, n) = 1 \), \(n \) can be composite or prime number.

2.5 Source Code of Fermat Test

By coding the Algorithm into Mathematica (6.0 version), here is the source code:

```mathematica
a=__;
n=__;
If[2<=a<=n-1,\nIf[\gcd(a,n)==1,\nr =PowerMod[a,n-1];\nIf[r\neq1,n "is composite",n "is Prime"],n "is composite "],"cannot be proceed, pick a any integer 2\leq a \leq n-1"]
```

Once this is executed, if the input is a prime number then it will tells you that \(n \) is a prime. Otherwise it will gives you a message \(n \) is a composite. Take notes, there are numbers which also identified as prime numbers even though they are not. These numbers are called pseudoprimes. This is due again to the Fermat’s theorem. This source code can also identify Carmichael numbers (absolute pseudoprimes). Carmichael number is a pseudoprime for all bases \(a \). From the output produced by this test, we have tabled list of primes for every base \(a \) which are less than 10,000. The build-in Mathematica command, “PrimeQ[integer]” is used to verify the primality of the test output and from here can be identified the pseudoprimes, then the command, “PrimePi[10,000]”, is used to compute percentage of pseudoprimes. The smaller the percentage is, the better the ability of the test is, as this indicates the accuracy of the test. To look for Carmichael numbers, just need to look out for common pseudoprimes for each base \(a \). Here, the author restrict the
choice of the base a from 2 until 20 only. For a
complete output list of pseudoprimes and
Carmichael numbers refer to (Gradini, 2009).

3. Fermat Pseudo-prime

Let n is a Fermat pseudo-primes
(simply called pseudo-prime) if $a^{n-1} \equiv 1$ (mod n) but n is a composite number. Generally, a
composite number n such that $a^{n-1} \equiv 1$ (mod n)
is a pseudo-prime to base a.

Fermat pseudo-prime exists since
Fermat’s Little Theorem occurs in one way, recall that the theorem says if n is prime
number then $a^{n-1} \equiv 1$ (mod n). It is not
necessarily true that when $a^{n-1} \equiv 1$ (mod n), n
is a prime number.

Example 3.1

1. 341 is pseudo-prime to base 3.

It has already known that 341 is composite
since $341 = 11 \times 31$, but 341 passes Fermat
test, since $3^{341-1} \equiv 1$ (mod 341).

2. 217 is pseudo-prime to base 5.

$217 = 7 \times 31$, then 217 is composite, but
$5^{217-1} \equiv 1$ (mod 217), then 217 passes
Fermat test.

Table 3.1 List of pseudo-prime < 10,000 with
$2 \leq a \leq 20$

<table>
<thead>
<tr>
<th>a</th>
<th>Pseudo-prime 10 000 n(psp)</th>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>341, 561, 645, 1105, 1387, 1729, 1905, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 9551, 6601, 6643, 7957, 8321, 8513, 8713, 9029, 9811, 9881</td>
<td>22</td>
<td>1.79%</td>
</tr>
<tr>
<td>3</td>
<td>91, 121, 266, 671, 703, 949, 1105, 1541, 1729, 1891, 2465, 2665, 2701, 2821, 8321, 5367, 3751, 4961, 5551, 6601, 7381, 8401, 8911</td>
<td>23</td>
<td>1.87%</td>
</tr>
<tr>
<td>4</td>
<td>15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 2089, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8401, 8911</td>
<td>47</td>
<td>3.82%</td>
</tr>
<tr>
<td>5</td>
<td>124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7813, 8029, 8911, 9881</td>
<td>19</td>
<td>1.55%</td>
</tr>
<tr>
<td>6</td>
<td>35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3913, 4123, 4495, 5713, 6533, 6601, 8029, 8365, 8911, 9331, 9881</td>
<td>27</td>
<td>2.20%</td>
</tr>
<tr>
<td>7</td>
<td>25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321</td>
<td>15</td>
<td>1.22%</td>
</tr>
<tr>
<td>8</td>
<td>9, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651, 861, 949, 1001, 1105, 1281, 1365, 1387, 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 4371, 4641, 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481, 8911, 9265, 9709, 9773, 9881, 9945</td>
<td>70</td>
<td>5.70%</td>
</tr>
<tr>
<td>9</td>
<td>28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036, 1105, 1288, 1387, 1541, 1729, 1891, 2465, 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 8744, 8866, 8911</td>
<td>49</td>
<td>3.99%</td>
</tr>
<tr>
<td>10</td>
<td>33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333, 3367, 4141, 4187, 4521, 5461, 6533, 6541, 6601, 7107, 7471, 7777, 8149, 8401, 8911</td>
<td>30</td>
<td>2.44%</td>
</tr>
</tbody>
</table>
Table 3.1 gives the distribution of pseudo-prime \(\leq 10,000 \) at every base \(a \). The number of pseudo-prime is denoted as \(n(psp) \). All of those pseudo-prime numbers get by comparing the solution (output) of Fermat test with the list of primality of positive integers \(\leq 10,000 \) as exact solution. The exact solution was get from built-in program in Mathematica (6.0 version). Then the output of Fermat test and exact solution are used as input to perform the pseudo-prime by using a syntax in Mathematica (6.0 version), `Complement[x_,y_]`.

Based on Table 2.2 number of prime number \(\leq 10,000 \) is 1229. Then by dividing \(n(psp) \) by 1229, we can get the percentage of pseudo-prime at each base. In prime number \(\leq 10,000 \), \(2 \leq a \leq 20 \), base 8 produces the biggest number of pseudoprime, that reach 5.70 %, while the smallest number of

11	15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257, 2465, 2821, 4577, 4921, 5041, 5185, 6601, 7869, 8113, 8170, 8695, 8911, 9730	28	2.28%
12	65, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885, 1891, 2041, 2233, 2465, 2701, 2821, 2983, 3367, 3553, 5005, 5365, 5551, 5785, 6061, 6305, 6601, 8911, 9073	33	2.69%
13	21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465, 2806, 3605, 5028, 5149, 5185, 5565, 6601, 7107, 8841, 8911, 9577, 9637	25	2.03%
14	15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6534, 6517, 7107, 7171, 7449, 7543, 7585, 8321, 9073	32	2.60%
15	341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 7471, 8701, 8911, 9073	19	1.55%
16	51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285, 1387, 1581, 1687, 1695, 1729, 1891, 1905, 2047, 2071, 2091, 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 6601, 6643, 7471, 7735, 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9605, 9919	63	5.13%
17	45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991, 4005, 4033, 4187, 4912, 5365, 5662, 5833, 6601, 6697, 7171, 8481, 8911	25	2.03%
18	25, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225,	40	3.25%
pseudoprime (1.22%) produced by base 7.
From the table above, it can be seen that
pseudo-prime are rare in prime number, but it
is not rare enough to be ignored.

3.1 Carmichael Number

A Carmichael numbers \(n \) is of
composite number \(n \) with the property that for
every base \(a \), \(a^{n-1} \equiv 1 \pmod{n} \). It follows that a
Carmichael number \(n \) must be square free,
with at least three prime factors, and that \(p-1 \)
\(n-1 \) for every \(p \) dividing \(n \) (Pinch, 2007).
There are 7 Carmichael number \(\leq 10,000 \).
Carmichael number does not appear at all base
in Table 3.1, because by properties, a pseudo-
prime is Carmichael number if satisfies:

1. Square-free
2. Has prime factor at least 3, and for
every prime factor \(p \), \(p-1 \mid n-1 \)
3. Passes Fermat test at base \(a \) where
\(\gcd(a, n) = 1 \)

For seeing the Carmichael numbers within
Fermat Pseudoprimes, please refer to (Gradini, 2009)

C. CONCLUSION

Using Mathematica 6.0 for the
primality tests, the author has managed to
conduct technical tasks and perform the ability
of the primality tests discussed earlier. These
technical tasks were usually done using
programming languages which take very long
time to do the source code. For example
programming language C or C++ and other
programming languages that requires deep
understanding and time consuming. There are
absolute pseudo-prime (Carmichael numbers)
in Fermat test, but not on the other tests and

Fermat has the large number of prime which is
very far from the exact number.

REFERENCES

Test. Master's Thesis. The Middle
East Technical University.

report of MSc in Teaching of
Mathematics, Universiti Sains
Malaysia.

Kumanduri, Ramanujachary & Romero, Cristina. (1998). Number
Theory with computer Application. New Jersey: Prentice-Hall.

McIntosh, Christina. (2007). Finding Prime
Numbers: Miller-Rabin and
Beyond. Electronic Journal of
Undergraduate
from World Wide Web:
www.scribd.com/doc/4904376/FINDING-PRIME-NUMBER -